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where
. 6
B(r) = f; exp [— '_,ﬂil - B2 <@> )
p r

and Q,, specifies the direction of r;, relative to the
c-axis. The theoretical values of the parameters are
B, =2.6K,p, = 1.6K,andp = 0.283A;a, =3.75A
is the nearest neighbor distance in solid H, at P = 0.
For computational simplicity, we retain only the m = 0
part of this interaction and have, upon comparison
with eq. (10),

V2°(1,2) = V°(1,2) = (£ /5 B(r) Py(cos 0;,), (11)

where 0,, is the angle between r;, and the c-axis; P,
is the Legendre polynomial of degree two. There is also
an anisotropic potential proportional to Y,(w;) Y,(w,).
The dominant part of this is the electric quadrupole-
quadrupole (EQQ) interaction which gives

g B aplY
V22(1,2) = 20n Iy Py(cos 04,) (—| , §(12)
r '

where I'y = 1 K. Once again, we neglect terms with
m # 0. Finally, there should also be terms in eq. (10)
proportional to Y,,(w;) and Y,,(@,); the sum of all
neglected terms is less than about 109 of V> or V%2
for all molar volumes treated here. In order to be con-
sistent in this regard, we systematically ignore all terms
involving Y,(w,) and Y,(w,) in what follows.

It is interesting to compare the exponential (valence)
part of V,,; in eq. (11) with the corresponding part of
the empirically determined E6 potential. The empirical
constant p, = ry/a = 0.239 A is sufficiently different
from the theoretical p, = 0.283 A to produce consider-
ably different results in the calculations presented be-
low if p, is replaced by p.. We shall comment further
on this point in section 4.

3. Anisotropic formalism

The introduction of V,,; depending on the rotational
state of the molecules produces an admixture of rota-
tional states in the single-particle and correlation func-
tions. When V,,; is taken in the form of eq. (10), then
¢(1) becomes

¢l ;) = Yo(wy) @oi(1)+ Yy () @5(1), (13)

so that we now have two functions ¢g; and ¢,; to
determine. Rotational states with / > 2 are ignored;

this procedure is valid as long as the “anisotropy
energy” is small compared to the excitation energy of
these states.

Similarly, the single-particle self-consistent field now
takes the form

u(1, wy) = Yo(wy) Yo(w,) ug1)+ Yo(@;) Ya(o) up(1).
(14)

The Schrodinger equation for the single-particle func-
tion can be written as two equations:
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+uy; Y02 Poi = € P2y (15b)

where we have used
,Y, =GP Y. Yo+ (GE \/5) Y, o+35 Y, Yo,

and Y, has been neglected, which is consistent with our
approach of considering only the / = 0, 2 rotational

states.
The general form of the correlation function

1ij(1, 25 0y, @,) is
16515 25 01, ) = 4m [1(1, 2) Yo(y) Yo(w)
+757(1, 2) Ya(o;) Yo(@,)
+ 2571, 2) Yo(w;) Ya(@,)

+Xi2jz(1a 2) Yy(w,) Yy(w,)]  (16)

in our approximation. We remark that y;; is part of the
two-particle Green’s function which has been factored
into single-particle and correlation functions. This se-
paration is not unique, and the form of y;; in eq. (16)
is a consequence of our previous treatment (EBNER and
SUNG, 1971b).

The self-consistent field is given by the same equa-
tion as before

”i(la wl) =
=3 [ V0.2 10,2500, 03) 19,2 02) &3 do.
J
(17
The equation of motion for y;; is similar to eq. (4),

H;j 1ij 0 05 = Ao Lij Pi Pjs (18)
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+ V(1,25 04, 0p) +ui(l, @)+ u 2, w,)+ 4;/(1,2)

- f 1ip (L2300, @) V(1,D) | 9,3, @) |2 d°F, da,

= flij(i 2;@y,w,) V(1,2) | o1, @,)|* &°F, d&y,
(19)

where J;% and J,? are the internal angular momentum
operators for molecules 1 and 2. The simultaneous
solution of these equations plus the single-particle equa-
tion and the self-consistency condition eq. (17) is a
formidable numerical problem. Since our interest at
this time is primarily to examine the effect of the aniso-
tropic interaction on the energy in the molecular phase
rather than to pursue the question of a transition to the
metallic phase, an expansion procedure will be used.
We keep terms in V,,; through second order only. This
means that we should find ¢,; and u,; to first order in
Vani and ¢@,; and uy; to second order. If ¢,; is nor-
malized to 1, then each single-particle wave function
should be multiplied by Nj *, where

N, f ol d ¥, +f o3 &ry

14 f o2(1) dr,y. 20)

Also, to maintain the proper normalization of the two-
particle Green’s function, the correlation function
should be divided by N,, where
Na = 142 [ 80,2 03D 00,2 02/
.+Xi2jo(1=2) (P%j(z) @oi(1) @,(1)
+257(1,2) 95i1) 93,21 &°ry &rs,

where we have used

@n

f X?jo(la 2) (P(zn(l) (P(2>j(2) d3"1 da"z =1.

The single-particle potential is given to the appropriate
order in V,,; by

woll) = 3 [ V0 45 o, N5 8,

23 f Vo0 xi? Poj @2, d°r,
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J.

’

00 00 2 43
V Xij ‘szd ra

erOZ 02

+

Xij q’(zu d3’2

¥
¥

’ V22 22

% Zl f VZO Xzzjo (Pg, d3r2
J

+§‘Z f xii @5;d°r,

J
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+ Y f P ot (23)
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The expression for u,; is correct to second order in
Vani while u,; is first order. In these equations, correc-
tions to first order in ¥V,,; only are needed in xﬁ These
are determined as follows: Eq. (18) is multiplied by
Yo(w,;) Yo(w,) and integrated over w; and w, to give
HP 15 ®0i @oj = 4o i) Poi Poj»
where H ?jo is the operator {...} in eq. (4). Thus x?jo is
Just thecorrelation function of EBNER and SUNG (1971a).
Of course, ¢,; differs from the single-particle function
when V,; is not present, but the difference is second-
order and we shall ignore it. By also multiplying
Yy(wy) Yo(w,), Yo(w,) Yy(®,) and Y,(w,) Y,(w,) into
eq. (18) and integrating over w, and w,, we obtain

three equations for the anisotropic part of the correla-
tion function,

H?,-° Xizjo Poi Po;+6 By Xzzjo ©oi Po;+6 By Z?jo P2i Poj
+H? 17 @01 Poj = A0 23 Poi Poj (24)
H?jo X?jz Poi Poj+6 By X?jz ®oi Po;j+6B; X?jo Poi Paj
+H? 1 001 @0; = 4o %if Poi ®o; (25)
and
H?jo Xizjz Poi Po;+12B; x:'zjz Poi Poj
+H* X?jo Poi Poj = Ao XEsz Poi Poj» (26)
where ‘

H02=H20=K2—0 HZZ_fj
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